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Gibbs-Bogolyubov inequality and transport properties for strongly coupled Yukawa fluids
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1Département de Physique The´orique et Applique´e, CEA/DAM Ile-de-France, Boıˆte Postale 12, F-91680 Bruye`res-le-Chaˆtel, France
2Plasma Theory Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 24 January 2003; published 28 April 2003!

The Gibbs-Bogolyubov inequality is used to establish a mapping between the Yukawa system and both the
hard-sphere and the one-component reference systems. The transport coefficients of self-diffusion, shear vis-
cosity, and thermal conductivity are computed for the Yukawa fluid using known properties of the reference
systems. Comparisons are made with simulation results. For sufficiently strong screening, the hard-sphere
reference system yields a lower upper bound of the Yukawa Helmholtz free energy and a better estimate of the
Yukawa transport coefficients.
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I. INTRODUCTION

When the properties of a many-body system are
known, or are difficult to calculate, it is common to relate t
system to anothersimpler reference system and use th
known properties of that system. Most often, the relations
between the systems is found using a variational appro
such as the Gibbs-Bogolyubov inequality~GBI!. The GBI
yields a lower upper bound on the Helmholtz free energy
the system of interest in terms of properties of the refere
system. An outcome of the variational procedure is a m
ping between parameters of the systems. The hard-sp
~HS! system is often used as the reference, although the
component plasma~OCP! may be encountered for the Cou
lomb systems. For example, Ashcroft and Stroud have u
known properties of the HS system to compute thermo
namic properties of simple liquid metals@1#. This yields, for
example, a mapping between the Coulomb coupling par
eter G of the one-component plasma and the HS pack
fraction h. Screened dense plasmas characteristic of Jo
interiors have been similarly modeled by Galam and Han
by relating them to the HS and OCP systems@2#. In their
comparisons of the Helmholtz free energy, they find that
OCP is a superior reference system than the HS unde
conditions considered, in the sense that the OCP yield
lower bound on the free energy than the HS.

Properties other than thermodynamic quantities can
be computed using the mapping that results from the G
For example, Iyetomiet al. @3# compare accurate radial dis
tribution functions for the screened Coulomb systems
tained from Monte Carlo to those obtained from OCP a
HS reference systems. They find that the reference sys
yield radial distribution functions similar to the Monte Car
results. In agreement with Galam and Hansen, they also
that the OCP is a superior reference system to the HS sy
for screened Coulomb systems. Transport properties h
also been computed in this way. The diffusion coefficient
the OCP has been estimated by Tanaka and Ichimaru@4#
using the known diffusion coefficient of the HS system a
the HS-OCP mapping. The relation between the OCP and
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systems is easily generalized to yield a relation between
Yukawa system, for which the interparticle pair interaction
of the form

vY~r !5
Z2e2

r
exp~2ar !, ~1!

and the HS system. Here,e, Z, anda are the electron charge
the ion charge, and an effective inverse screening len
respectively. If we express all lengths in unit of the Wigne
Seitz radiusaWS, the interparticle pair interactionvY multi-
ply by the inverse temperatureb can be read under a mor
usual and compact expression

uY~r !5
G

r
exp~2kr !, ~2!

whereG5bZ2e2/aWS andk5aaWS are dimensionless cou
pling and screening parameters,b51/kBT, (4p/3)aWS

3 r i

51. r i5N/V is the particle density of the system ofN ions
contained in the volumeV, T is the temperature of the sys
tem supposed to be in thermodynamic equilibrium, andkB is
the Boltzmann constant. The Yukawa-HS mapping can
turn be used to find a relationship between the OCP
Yukawa systems, as shown by Murillo@5#, which should be
an improvement since the OCP limit (k→0) is an exact limit
and the OCP generally yields a lower free energy estim
for screened Coulomb systems, as mentioned above@2,3#. In
this method the HS system acts only as an intermediate
tem to establish the Yukawa-OCP mapping. Recently, C´r-
ouin and Dufreˆche @6# have shown that this relationshi
yields satisfactory results for the diffusion coefficient a
shear viscosity, as compared to simulation results for de
hydrogen.

Generally we do not knowa priori how good the mapping
given by the GBI is, other than knowing that one referen
system may be better~yields a lower upper bound on the fre
energy! than another. Due to the intense recent interes
systems described by the Yukawa model, we are now i
position to be able to perform careful tests of this variatio
technique. Dusty plasmas~plasmas containing micron-size
impurities or ‘‘grains’’! have provided much of the impetu
for these studies, for which the intergrain interactionfr
©2003 The American Physical Society04-1
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known to be of the Yukawa form@7#. This system is similar
to a colloidal system, which can also have Yukawa inter
tions under suitable conditions@8#; however, the colloidal
systems are Brownian systems whose dynamics are stro
affected by the solvent. Here our focus is on transport pr
erties in the absence of damping by background species

The accuracy of the variational procedure can be as
tained by comparing the variational free energy to recen
available simulation results. Hamaguchi and co-work
have given accurate results based on molecular dyna
simulations@9# and Caillol and Gilles have presented simil
information using Monte Carlo calculations@10#. The results
of the variational principle can then be used to obtain tra
port coefficients. Hamaguchi and co-workers have perform
molecular dynamics simulations of transport properties
Yukawa systems, including both the diffusion coefficie
@11# and the shear viscosity@12#. More recently, Salin and
Caillol @13# have presented a few molecular dynamics co
putations of the thermal conductivity and the shear and b
viscosities of the Yukawa one-component plasma.

In Sec. II, the GBI is reviewed in general and for OCP a
HS reference systems. In Sec. III, computational details
results are given for the variational procedure. The resul
Yukawa-OCP mapping is used to compute several trans
coefficients in Sec. IV and comparisons are made with sim
lation results. Section V is the conclusion.

II. VARIATIONAL PROCEDURE

The variational approach using the GBI is briefly r
viewed in this section in the context of the Yukawa syste
Both the OCP and HS systems are considered as pos
reference systems.

A. Review of the Gibbs-Bogolyubov inequality

We wish to estimate the free energy of the Yukawa s
tem, as characterized by$G,k%, using the known propertie
of a reference system, as characterized by some set o
rameters$an%. To establish the specific parameters of t
reference system$an% that will best describe the Yukaw
system, the variational approach based on the GBI is u
We assume that the particles in the reference system hav
same mass and temperature than the Yukawa system.

The Helmholtz free energyFY of the Yukawa system is
defined in terms of its HamiltonianHY as

exp~2bFY!5Tr@exp~2bHY!#. ~3!

Here the trace operation is defined for a classical system

Tr@A#[
1

N!h3NE d3Nr E d3NpA, ~4!

whereh is the Planck constant. Consider an arbitrary pha
space densityr, which describes the reference system w
parameters$an% and is normalized such that Tr@r#51. The
unit ratio r/r5r exp@2ln(r)# can be inserted into the trac
to yield
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exp~2bFY!5Tr$rexp@2bHY2 ln~r!#%,

[^exp@2bHY2 ln~r!#&r . ~5!

Here the average is defined as^A&r[Tr@rA#. It is now pos-
sible to write, using the inequalitŷexp(P)&r>exp(̂ P&r)
@14#,

^exp@2bHY2 ln~r!#&r>exp@^2bHY2 ln~r!&r#, ~6!

or, equivalently,

FY<^HY&r1b21^ ln~r!&r . ~7!

We would now like to choose an approximate form forr and
variationally minimize the right-hand side of this equation
optimize the accuracy of usingr for the Yukawa system.
Here, we choose

r[
exp~2bHr!

exp~2bFr!
,

exp~2bFr!5Tr@exp~2bHr!# ~8!

to be that of some other many-body system, the ‘‘refere
system,’’ that has well-known properties. For such a ref
ence system we find that

FY<Fr1^HY2Hr&r , ~9!

which is the GBI@14,15#. Note that the average is over prop
erties of the reference system. Once the optimalr is found
from this inequality, the right-hand side serves as an appr
mation for the Yukawa Helmholtz free energy. The degree
which the reference system can estimate the properties o
Yukawa system can be ascertained by the closeness of
estimate to the exact free energyFY . From Eq.~9!, various
thermodynamic quantities can be deduced such as pres
internal energy, and entropy. Details are given in Appen
A. Though many systems can be used as reference syst
the number of choices is drastically reduced if we take i
account the constraints that such a reference system sh
obey in order to test the GBI efficiently. We must have a
cess to the excess free energy, the excess internal energy
the radial pair-correlation function over the entire fluid d
main. Moreover, the main transport coefficients, i.e., the s
diffusion, the shear viscosity, and the thermal conductiv
must be known analytically in the same conditions. To o
knowledge, the HS and the OCP systems are the only ma
body systems that can pass this test and can be select
two possible reference systems.

B. Hard-sphere reference

Consider a HS system composed ofN spheres of diamete
s in a volumeV at temperatureT. This system is character
ized by pair interactions of the form

uHS~r !5H `, r ,2h1/3

0, r .2h1/3,
~10!
4-2
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where the HS packing fraction is defined ash5pr is
3/6.

The HS system can be characterized by the single param
h.

C. One-component plasma reference

The unscreened OCP system ofN ions in volumeV at
temperatureT, neutralized by a rigid homogeneous bac
ground, is characterized by pair interactions of the form

uOCP~r !5
GOCP

r
. ~11!

This is Eq.~2! with G5GOCP and k50. The OCP system
can be characterized by the single parameterGOCP .

III. RESULTS FOR THE HELMHOLTZ FREE ENERGY

As shown in Appendix A, Eq.~9! can be rewritten as

f Y
(ex)< f r

(ex)2ur
(ex)1

r i

2 E0

`

dr4pr 2bvY~r !@gr~r !21#2
Gk

2
,

~12!

where f Y
(ex) , f r

(ex) , andur
(ex) are the Yukawa, the referenc

system excess free, and the reference system internal
gies per particle normalized in terms ofkBT, respectively.
gr(r ) is the radial distribution function of the reference sy
tem. f Y

(ex) , f r
(ex) , andur

(ex) are dimensionless quantities@15#.
The right-hand side of Eq.~12! can be minimized with re-
spect toh(GOCP) if the reference system is the HS~OCP!
system for fixed$G,k%. By construction, this procedure con
tains the OCP as the special case. The term21 inside the
integral is due to the rigid and neutralizing background.

As for the HS system, the approximate Carnahan-Star
~CS! HS excess free energy has been used@16#. The hard-
sphere radial distribution function is taken in the Perc
Yevick ~PY! approximation with or without the procedur
proposed originally by Verlet and Weiss~VW! @17# and ex-
tended by Henderson and Grundke~HG! @18# in order to
correct two major defects of the PY solution: first, the val
at contactgHS(s) is too small; second, the later oscillation
have the wrong phase and are too weakly damped. Wi
the VW and the HG approaches,gHS(s) is correct and has a
value in agreement with the Carnahan-Starling equation
state. Moreover, the radial distribution functiongHS(r ) gives
the correct isothermal compressibility, which is also cons
tent with the Carnahan-Starling equation of state. The res
ing radial distribution function fits the ‘‘exact’’ computer
generated~Monte Carlo or molecular dynamics! functions to
within one percent for allh @15#. Note that this procedure
can be adapted to any HS equation of state. In each case
integral in Eq.~12! can be done analytically@5#, as shown in
Appendix B.

As for the OCP system, the situation is far more diffic
because we do not know any simple, accurate, and consi
analytic expressions for the excess internal energyuOCP

(ex) , the
excess free energyf OCP

(ex) , and the radial distribution function
gOCP(r ) that span the entire fluid domain, namely,GOCP
04640
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between 0 and 180. Very precise formulas already exist
uOCP

(ex) and f OCP
(ex) that have been obtained by fitting very acc

rate Monte Carlo data@19–21#. Some approximate and sem
empirical expressions forgOCP(r ) have been proposed in th
litterature @22,23#. Some interpolations from very precis
Monte Carlo data have been published forgOCP(r ), or at
least for the structure factor@24,20#. However, none of these
expressions can be used to minimize the right-hand sid
Eq. ~12! with respect toGOCP in the entire fluid domain of
the Yukawa plane$G,k%. The consistency between the radi
distribution function and the equation of state is one po
The other point is related to the curvature of the function

GOCP→D f G,k
GBI~GOCP!

5 f OCP
(ex) 2uOCP

(ex) 1
r i

2 E0

`

dr4pr 2bvY~r !

3@gOCP~r !21#2
Gk

2
. ~13!

Whenk50, this function must have only one minimum fo
GOCP5G. This means that the best GBI OCP to a given O
must be the same OCP. If we start from the Yukawa sys
$G,k%, we must recover the OCP system$G,0% as a particu-
lar case, when minimizing the right-hand side of Eq.~12!
with respect toGOCP . None of the aforementioned expre
sions forf OCP

(ex) , uOCP
(ex) , andgOCP(r ) satisfy this rule. In gen-

eral, the situation is worse with increasingG. The more we
approach the critical valueGc5171.8 corresponding to the
OCP melting @5#, the flatter is the function near th
minimum. As a consequence, any slight inconsistency
inaccuracy can seriously perturb the functionGOCP

→D f G,0
GBI(GOCP) and lead to unphysical results~one mini-

mum different fromG, two minima, or even no minimum
at all!. In summary, the consistency betweenf OCP

(ex) , uOCP
(ex) ,

and gOCP(r ) and the fact that the functionGOCP

→D f G,0
GBI(GOCP) has a single minimum inGOCP5G consti-

tute a stringent test to study the quality of a given OC
system. It should be noted that for HS reference system,
equivalent function

h→D f G,k
GBI~h!5 f HS

(ex)2uHS
(ex)1

r i

2 E0

`

dr4pr 2bvY~r !

3@gHS~r !21#2
Gk

2
~14!

has always one minimum for the OCP case. Moreover,
three approximations CS-PY, CS-VW, and CS-HG gi
nearly the same value ofh when minimizing the right-hand
side of Eq.~12!. The difference does not exceed a few p
cents. Furthermore, the curvature in the vincinity of the mi
mum is strongly marked, so that the difficulties encounte
with the OCP reference system are absent there.

To sum up, we need for the OCP reference systemf OCP
(ex) ,

uOCP
(ex) , and gOCP(r ) that are self-consistent and match e

actly the computer-generated quantities for allGOCP
4-3
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P@0,180#. The ideal solution would be to use the comput
generated quantities directly in-line, while minimizing th
right-hand side of Eq.~12! with respect toGOCP . However,
one has to eliminate this solution for computer-time reas
The same reason prevents ourselves to solve in-line inte
equations to get the radial distribution functiongOCP(r )
from the potentialbvOCP(r )5GOCP /r . The problem of
bridge function or closure brings additional complicatio
@15,25–31#. The situation would be hopeless without th
Chebyshev approximation@32,33#. This method consists in
expanding a given smooth function, defined in the inter
@21,1#, on the Chebyshev polynomials up to orderN. For a
fixed N, this particular polynomial approximation of func
tions is better than any other one, because the Cheby
approximation is very nearly the same polynomial as
minimax polynomial, which~among all polynomials of the
same degree! has the smallest maximum deviation from t
true function. The minimax polynomial is very difficult t
find; the Chebyshev approximating polynomial is almo
identical and is very easy to compute. This method can
easily generalized to approximate functions defined in fin
or infinite intervals @33# and combined with fast Fourie
transform~FFT! to speed up the calculations whenN is a
power of 2. Last but not the least, we can evaluate, quic
and with high precision, the derivative or integral of th
function just as if it were a function that has be
Chebyshev-fittedab initio and fit that way many variable
functions@32#.

We have thus solved the hypernetted chain~HNC! equa-
tions with the bridge function proposed by Iyetomiet al. @30#
for OCP system for r P@0,50# (r P@0,10#) and GOCP
P@0.1,180# (GOCPP@0,0.1#), and expanded the radial dis
tribution function~the short-range part of the screening fun
tion @25,30#!, considered as a function ofGOCP andr on the
Chebyshev polynomials. The interval@0,180# was split in
two intervals,@0,0.1# and@0.1,180#, to avoid the Gibbs phe
nomenon due to the stiffness ofgOCP(r ) near the origin with
decreasingGOCP : 256 (32) polynomials were used fo
GOCP for the largest~shortest! interval. For the shortest in
terval, the radial distribution function is taken to be iden
cally null beyond ten. As forr, 256 (32) polynomials were
used for the largest~shortest! interval. Clearly, knowing the
radial distribution for 321256 different values ofGOCP in
the radial range@0,50# allows ourselves to know the radia
distribution function as if we had solved the correspond
integral equations in the same interval whatever the valu
GOCP may be. The storage capacity is limited to the mi
mum without loss of accuracy due to interpolation proced
or approximate semiempirical analytical fit. All the compu
ing time is spent in generating the data basis, but this wor
done once for all! We could have expanded rather the sh
range part of the direct correlation function, which
smoother than the radial distribution function forGOCP
P@0,180#. Yet, one should have to perfom an FFT to obta
gOCP(r ) by solving the Ornstein-Zernike equation@25,15#.
This procedure has the main drawback of slowing down
minimization of the right-hand side of Eq.~12! unnecessar-
ily. Note that this method is neither limited to the OCP sy
tem nor to integral equations. One could imagine to use it
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other potential and for other method to get the radial dis
bution function~Monte Carlo, molecular dynamics, HMSA
@28#, . . . !. Finally, uOCP

(ex) is calculated by quadrature from
gOCP(r ) and f OCP

(ex) is obtained by running coupling-consta
integration fromuOCP

(ex) . Both uOCP
(ex) and f OCP

(ex) are developed
on 256(32) Chebyshev polynomials for GOCP
P@0.1,180# (GOCPP@0,0.1#).

As an illustration, let us start from Eq.~13! with k50 and
let us find the minimum of the function

GOCP→D f G,0
GBI~GOCP!5 f OCP

(ex) 2uOCP
(ex) 1

G

GOCP
uOCP

(ex) ,

~15!

in the following four cases, depending on how the thr
terms of the right-hand side of Eq.~15! are calculated:~a! the
three terms are calculated by quadrature,~b! the first term is
calculated using the fit of DeWitt and Slattery@21# and the
two other terms are calculated by quadrature,~c! only the last
term term is calculated by quadrature, the other terms
taken from the fit@21#, ~d! the whole terms are calcnulate
from the fit @21#. Results are written in Table I.Gc is the
critical coupling strength corresponding to the Yukaw
liquid-solid phase boundary. The OCP valueGc5171.8 is
taken to be consistent with simulation results@5#. Only cases
~a! and ~d! give GOCP5G up to the OCP liquid-solid phas
boundary. In case~b!, we are using a reference excess fr
energy inconsistent with the radial pair-correlation functio
but the first-order correction, namely,^G/r 2GOCP /r &GOCP

5(G/GOCP21)uOCP
(ex) @see Eqs.~2!, ~9!, and ~15!#, is calcu-

lated self-consistently with the same radial pair-correlat
function. GOCP is different fromG but results are good be
cause both values are close to each other and the p
boundary transition is nearly described. In case~c!, we are
using a reference excess entropy inconsistent with the ra
pair-correlation function. Results are similar to case~b! until
we approach the phase boundary transition: we thus see
they rapidly deteriorate and the phase boundary transitio
not correctly described. In summary, we can use the d
obtained by solving the HNC equations with the bridge fun
tion proposed by Iyetomiet al. @30# (HNC1B) for the OCP

TABLE I. Values of GOCP minimizing the function
DF G,0

GBI(GOCP) @see Eq.~15!# for different values ofG. Four cases
are considered, depending on how the three terms of the right-h
side of Eq.~15! are calculated,~a! the three terms are calculated b
quadrature,~b! the first term is calculated using the fit of DeWi
and Slattery@21# and the two other terms are calculated by quad
ture, ~c! only the last term is calculated by quadrature, the ot
terms are taken from the fit@21#, ~d! the whole terms are calculate
from the fit @21#. Gc is the critical coupling strength correspondin
to the Yukawa liquid-solid phase boundary.Gc5171.8 for OCP@5#.

G 1.000 10.00 40.00 80.00 160.0 Gc

GOCP ~a! 1.000 10.00 40.00 80.00 160.0 Gc

~b! 1.009 10.59 41.82 82.10 159.8 170.9
~c! 0.992 10.71 41.15 83.00 170.8 .Gc

~d! 1.000 10.00 40.00 80.00 160.0 Gc
4-4
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system in a self-consistent way within the GBI method. T
HNC1B data reproduce well the OCP system@30# but are
not perfect@34,35#, the uncertainty being greater for the e
cess entropy than for the excess free energy.

We propose now to minimize the functionGOCP

→D f G,k
GBI(GOCP) in Eq. ~13! with respect toGOCP , find the

new OCP-Yukawa mapping, and compare to the old met
@5#. Results are plotted on Fig. 1. We have used the ca
depicted on Fig. 2 of Ref.@5#. We see that for each value o
k, GOCP found with the new method is larger than that fou
with the old method. This means that using a HS refere
system tends to overestimate the screening, especially a
G and high k. Calculations were also performed fork
50,1, . . .,9,10 andG.1 to get an analytical expression fo
the OCP-Yukawa mapping parameter~or effective OCP cou-
pling strength! GOCP with respect to the Yukawa paramete
G andk. The full set of solutions was fit by the form

GOCP5a~k!Gb(k), ~16!

where

a~k!50.08110.920F12expS 2
7.816

~11k!2.774D G , ~17!

and

b~k!50.08410.923F12expS 2
18.009

~11k!1.485D G . ~18!

Numerical values in Eqs.~17! and ~18! were obtained from
the data written in Table II. To be complete, the full set

FIG. 1. The OCP coupling parameter versus the Yukawa par
eter for variousk values and for HS and OCP reference system
04640
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solutions for CS-PY was fit by the form

ln~h!53 ln~G!2 ln~8!1@a2~k!1a3~k!ln~G!#

3 ln$w@a0~k!ln~G!1a1~k!#%, ~19!

where

w~x!5
exp~x!

11exp~x!
, ~20!

and

a0~k!520.1152
7.487

11k
1S 20.3291

6.754

11k
2

0.328

~11k!2D
3F12expS 2

53.273

~11k!2D G ,

a1~k!50.5402
24.249

11k
1S 20.8761

25.541

11k
2

0.744

~11k!2D
3F12expS 2

51.771

~11k!2D G ,

a2~k!57.4212
49.887

11k
1S 22.0401

44.408

11k
1

1.938

~11k!2D
3F12expS 2

47.579

~11k!2D G ,

a3~k!520.0271
0.467

11k
1S 0.0462

0.494

11k
1

0.014

~11k!2D
3F12expS 2

31.914

~11k!2D G . ~21!

Right now, this expression extends the fit originally propos
by Murillo @5#. It is consistent with the OCP limit at lowG,
i.e., h;(G/2)3 @36#. We found that the relative error with
respect to the analytic result of Stroud and Ashcroft@36# for
OCP is less than 20% over the rangeh51029,0.6. Equa-
tions ~19!, ~20!, and ~21! generalize the OCP case to th
Yukawa case. Numerical values in Eqs.~21! were obtained
from the data written in Table III. From now on, the who
applications are done with the original solutions; the use
any fit is explicitly specified.

Although the above results can be justified by the use
the variational principle, the optimal results of the GBI do

-

089
462
TABLE II. Values of a(k) andb(k), defined by Eq.~16!, used to obtain Eqs.~17! and ~18!.

k 0 1 2 3 4 5 6 7 8 9 10

a(k) 1.000 0.709 0.361 0.225 0.163 0.132 0.114 0.103 0.096 0.091 0.
b(k) 1.000 0.999 0.997 0.917 0.824 0.737 0.662 0.600 0.546 0.501 0.
4-5
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TABLE III. Values of @ai(k)# ( i 50,3) defined by Eq.~19!, used to obtain Eq.~21!.

k 0 1 2 3 4 5 6 7 8 9 10

a0(k) 21.503 20.887 20.731 20.700 20.722 20.753 20.767 20.762 20.748 20.727 20.691
a1(k) 0.220 0.144 20.017 20.292 20.631 20.930 21.122 21.209 21.243 21.231 21.144
a2(k) 1.845 3.143 3.707 3.648 3.333 3.087 3.006 3.054 3.155 3.308 3.
a3(k) 0.006 0.009 0.015 0.023 0.029 0.030 0.028 0.025 0.022 0.019 0.
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not reveal how close the reference excess free energy
the actual excess free energy, nor what physical quan
other than the excess free energy can be extracted from
optimal results. To quantify the accuracy, the OCP-Yuka
mapping using GBI serves to predict the liquid-solid pha
boundary of the Yukawa fluid and to compare to the simu
tion data of Hamaguchiet al. @9#. The phase boundary i
found by solving for the critical coupling strengthGc and for
variousk the equation

Gc5GOCP~G,k!, ~22!

whereG is the unknown and the OCPGc is kept equal to
171.8. We have done similar calculations for the HS ref
ence solving for the critical HS parameterhc and for various
k the equation

hc5h~G,k!, ~23!

whereG is still the unknown one and the HShc is known to
be hc52/3hcp . hcp is the closed-packing fractionhcp

5p/3/A2 @37#. This procedure differs from that originall
proposed in Ref.@5#, which had the drawback of not usin
directly the properties of the reference system, namely, h
the HS packing fraction at freezing. Results are shown
Fig. 2. Compared to Fig. 3 of Ref.@5#, the actual procedure
adopted for HS reference gives a considerable improvem
in predicting the phase boundary. Taking into account
VW or the HG corrections have negligible effects on t
results. As for OCP reference system, the agreement with
simulation data is excellent considering the simplicity of t
theory. The accuracy of the fit is good too. The differenc
between both reference systems is more pronounced at
G, showing that the OCP provides a better reference sys
for the Yukawa system in this situation. Moreover, such
correspondence is guaranteed to give the exactk50 limit,
whereas a HS reference does not give such a guarantee

We have plotted in Figs. 3 and 4 the excess entropy
the excess pressure versusG using the OCP reference sy
tem. The Yukawa values are taken from the procedure
the fits proposed by Caillol and Gilles@10#, whereas the OCP
exact values are taken from the fit of DeWitt and Slatte
@21#. Results are excellent for excess pressure—even b
for excess for free energy and excess internal energy~not
shown here!—as long as those quantities are calculated
quadrature using the radial pair distribution function atGOCP
without forgiving the term2Gk/2. Results are wrong if we
use the excess free energy, excess internal energy, and e
pressure of the OCP reference system. The situation is
ferent for excess entropy because, by construction, the ex
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entropy of the OCP reference system is the best approxim
of the Yukawa system excess entropy, in the GBI framewo
Results for excess entropy are good. Note that the ex
entropy of the OCP reference system is below the exc
entropy of the Yukawa system as expected@38#.

To be complete, let us now see whether the variatio
free energies based on the HS reference system lie sys
atically above the variational results based on the OCP@2#.
For eachG, we have searched for values ofk using the GBI
such thatf G,k

GBI(GOCP) in Eq. ~13! equalsf G,k
GBI(h) in Eq. ~14!.

Results are plotted in Fig. 5. We have kept the phase bou
ary of Fig. 2 predicted by molecular dynamics simulations
Hamaguchiet al. @9# and by the OCP and HS reference sy
tems based on GBI calculations. We see that the liquid p
of Yukawa system plane can be divided into two parts. Fo
given value ofG, the OCP reference system gives a low
excess free energy~OCP liquid! up to a critical value ofk,
beyond which the HS reference system gives a lower exc
free energy~HS liquid!. This result could be expecteda pri-
ori because for weak~strong! coupling, the OCP~HS! poten-
tial is physically closer to the Yukawa potential. This res
should be compared to GBI calculations using MC or M
data for the OCP reference system, because of the bias d
our HNC1B scheme.

FIG. 2. Phase diagram of the Yukawa system in the$G,k% plane.
The liquid-solid phase boundary is shown as predicted by the s
tion of Eq. ~22! for OCP reference system~solid line!, the solution
of Eq. ~23! for HS reference system~dashed line!, and the molecu-
lar dynamics~MD! results of Hamaguchiet al. @9# ~cross!. The
solution of Eq.~22! using the fit of Eqs.~16!, ~17!, and ~18! is
shown too~circle!.
4-6



ity
m
p
te

t
e

or
i

n
it

ms
of

nt
ese

the
sma
m a

in

if-

C
e
il

e fi

th
e
il

e fi

by

GIBBS-BOGOLYUBOV INEQUALITY AND TRANSPORT . . . PHYSICAL REVIEW E 67, 046404 ~2003!
IV. TRANSPORT COEFFICIENTS

Transport coefficients such as self-diffusion, viscos
and thermal conductivity are the most fundamental dyna
cal parameters that reflect the nature of the interparticle
tentials and characterize the thermodynamics of the sys
The variational approach using the GBI is used in order
estimate the self-diffusion, the shear viscosity, and the th
mal conductivity of the Yukawa system from the transp
coefficients of the OCP and HS systems. Comparisons w
MD data are done in a systematic manner over a wide ra
of the system parameters$G,k%. Our goal is to see whether

FIG. 3. Excess pressure as predicted by the GBI using the O
reference system~solid line! and the simulation results for th
Yukawa system using the procedure and the fits proposed by Ca
and Gilles@10#, whereas the OCP exact values are taken from th
of DeWitt and Slattery@21#.

FIG. 4. Minus excess entropy as predicted by the GBI using
OCP reference system~solid line! and the simulation results for th
Yukawa system using the procedure and the fits proposed by Ca
and Gilles@10#, whereas the OCP exact values are taken from th
of DeWitt and Slattery@21#.
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is possible to predict dynamic properties of Yukawa syste
from the GBI that is only valid to study static properties
systems in thermodynamical equilibrium.

A. Diffusion

The self-diffusion coefficient will be denoted byD. Many
conventions exist for normalizing the diffusion coefficie
that display quasiuniversal characteristics. Some of th
are by Hansenet al. @39# D85D/Dp f , by Ohta and Hama-
guchi @11# D* 5D/De f , and by Rosenfeld@40–43# Dr

5D/Dmd , where Dp f5vpaWS
2 , De f5veaWS

2 , and Dmd

5r i
21/3AkBT/m. Here,Dmd , ve , andvp5A4pr iQ

2/m are
the macroscopic diffusion, the Einstein frequency, and
plasma frequency, respectively. The ratio between the pla
frequency and the Einstein frequency can be obtained fro
fit to the result of Ohta and Hamaguchi@11# as

A3ve

vp
5e20.2058k1.590

. ~24!

Note that the Einstein frequency accounts for variations
the vibration frequency due to screening.

The diffusion coefficient for the OCP is given by@39#

DOCP8 5
2.95

GOCP
1.34

. ~25!

Sincevp /ve5A3 for OCP system, the OCP reference d
fusion normalized in terms ofDe f can be defined as

DOCP* [
DOCP

De f
5DOCP8 A3. ~26!

P

lol
t

e

lol
t

FIG. 5. Phase diagram of the Yukawa system in the$G,k% plane.
The ‘‘OCP liquid’’-‘‘HS liquid’’ phase boundary~see text, dotted
line! is shown with the liquid-solid phase boundary as predicted
the solution of Eq.~22! for OCP reference system~solid line!, the
solution of Eq.~23! for the HS reference system~dashed line!, and
the molecular dynamics~MD! results of Hamaguchiet al. @9#
~cross!.
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The Yukawa diffusion may then be obtained from this OC
result as

DYHM P* ~G,k!5
2.95A3

Ge f f
1.34

. ~27!

In Eq. ~27!, Y refers to Yukawa and HMP to Hansen, M
Donald, and Pollock@39#.

However, a log-log plot ofDOCP8 as a function ofGOCP is
approximately linear and Eq.~25! reproduced the MD data
by Hansenet al. @39# within 20%, except at the lowest valu
nearly equal to one. More recently, Ohta and Hamaguchi@11#
found that the self-diffusion coefficients in Yukawa syste
follow a simple scaling law with respect to the normaliz
temperatureT* 5Gc /G. In short,T* is the ratio of the sys-
tem temperatureT to the fluid-solid melting temperature o
critical temperatureTc . They fit their MD data to the form

D* 5ak~T* 21!bk1gk , ~28!

for eachk. They were also able to fit the OCP simulatio
data by Hansenet al. @39# to this same and more accura
form, compared to the former power law given by Eq.~25!.
The Yukawa diffusion may thus be obtained from this n
OCP result as

DYOH* ~G,k!5a0~Te f f* 21!b01g0 , ~29!

whereTe f f* 5Gc /Ge f f with Gc5171.8, i.e.,Gc used here is
the criticalG of the OCP system as calculated by Hamagu
et al. @9#; Ge f f is given by the GBI variational procedure. I
Eq. ~29!, Y refers to Yukawa and OH to Ohta and Hamagu
@11#.

As for HS system, Enskog’s theory for hard sphere
remarkably accurate when compared to simulations@41#. We
propose to use a fit to the relatively small corrections
Enskog, as obtained from the most recent simulations for
hard-sphere fluid@44#. Normalizing in terms ofDe f , the
Yukawa diffusion may be obtained from the HS resultDHS
as

DYHS* ~G,k![
DHS

De f
5

DHS

DE

DE

Dgas

Dgas

De f
, ~30!

where

DHS

DE
51.018 96~110.073h111.6095h2226.951h3!,

DE

Dgas
5

~12h!3

~12h/2!
,

Dgas

De f
5

1

8h2/3
Ap

G
e0.2058k1.590

. ~31!

Here, Dgas and DE are the result for a dilute gas and E
skog’s result, respectively. Note that the CS equation of s
for the radial pair distribution function at contact has be
used~see Appendix B!. This approximation is justified by the
04640
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s
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fact that the VW and the HG corrections have negligib
effects on the Yukawa-HS mapping based on the GBI va
tional method. In Eq.~30!, h is the effective hard-spher
packing fraction of the Yukawa system determined by
GBI variational method. In Eq.~30!, Y refers to Yukawa and
HS to hard sphere.

Results are plotted on Figs. 6, 7, and 8, where the norm

FIG. 6. Self-diffusion coefficient normalized in terms of th
Einstein frequencyD* vs normalized temperatureT* of the
Yukawa system withk51. MD, OH, HMP, and HS are the MD
calculations of Ohta and Hamaguchi@11#, the effective OCP using
the fit of Ohta and Hamaguchi@11#, the effective OCP using the fi
of Hansenet al. @39#, and the effective HS using the analytic fo
mula of Erpenbeck and Wood@41,44#.

FIG. 7. Self-diffusion coefficient normalized in terms of th
Einstein frequencyD* vs normalized temperatureT* of the
Yukawa system withk53. MD, OH, HMP, and HS are the MD
calculations of Ohta and Hamaguchi@11#, the effective OCP using
the fit of Ohta and Hamaguchi@11#, the effective OCP using the fi
of Hansenet al. @39#, and the effective HS using the analytic fo
mula of Erpenbeck and Wood@41,44#.
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GIBBS-BOGOLYUBOV INEQUALITY AND TRANSPORT . . . PHYSICAL REVIEW E 67, 046404 ~2003!
ized self-diffusion coefficientD* is plotted in function of
normalized temperatureT* for k51,3,5, respectively. The
range of variation ofT* corresponds roughly to the Yukaw
system excess entropy above one, i.e., to the stro
coupled Yukawa systems. From Fig. 5, we know that ther
a competition between OCP and HS systems, the HS sys
producing a lower GBI excess free energy with increasink
at constantG. This means that whenk is small ~large!, the
Yukawa system is more OCP-like~HS-like!, especially near
the liquid-solid phase boundary, i.e., whenT* tends to unity.
This is exactly what we find forD* . For k51, the Yukawa
self-diffusion coefficient is better estimated using the O
system given either by Eq.~27! or Eq. ~28! than by the HS
system. Fork53, the situation changes and HS curve b
comes closer to OCP curve; note then that the whole re
ence systems give roughly the same and good estimate o
Yukawa self-diffusion coefficient. The situation has chang
dramatically fork55; as suspected, the HS system give
better estimate of the Yukawa self-diffusion coefficient ov
the entireT* range. The situation is enhanced if we go
higher values ofT* ~not shown here!. As expected too@43#,
the whole models converge to the same limit when we
proach the liquid-solid phase boundary. To be complete, G
approach predicts a competition between OCP and HS
tems, but the difference between the corresponding GBI
cess free energy is indeed tiny. The calculation of s
diffusion confirms this competition, which has a strong
impact on physical results.

B. Viscosity

The shear viscosity will be denoted byhv to distinguish it
from the HS packing fractionh. The definitions of normal-

FIG. 8. Self-diffusion normalized in terms of Einstein frequen
D* vs normalized temperatureT* of the Yukawa system withk
55. MD, OH, HMP, and HS are the MD calculations of Ohta a
Hamaguchi @11#, the effective OCP using the fit of Ohta an
Hamaguchi@11#, the effective OCP using the fit of Hansenet al.
@39#, and the effective HS using the analytic formula of Erpenbe
and Wood@41,44#.
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ized shear viscosities are given byh85hv /hp f @15#, h*
5hv /he f @12#, and h r5hv /hmv @40–43#, where hp f

5mr ivpaWS
2 , he f5mr iA3veaWS

2 , and hmv5r i
2/3AmkBT.

Here, hmv is the macroscopic viscosity. Note thath* 5h8
whenk50, i.e., for the OCP system. The normalization e
ployed forh8 has been widely used for the OCP system@15#.
The normalization used forh* has been shown to be mor
suited for Yukawa systems, and is considered to be a nat
extension ofh8 of the OCP in finite screening~i.e., kÞ0)
@12#.

The viscosity coefficient for the OCP is given by@45#

hOCP* 5lI 11
~11lI 2!2

lI 3
, ~32!

where

l5
4p

3
~3GOCP!3/2,

I 15~180GOCPp3/2!21,

I 25
0.4922.23GOCP

21/3

60p2
,

I 350.241
GOCP

1/9

p3/2
. ~33!

This analytical fit to the OCP viscosity agrees reasona
with simulation results@46# and represents a procedure f
computing the Yukawa viscosity. The Yukawa viscosity m
then be obtained from this OCP result as

hYWB* ~G,k!5lI 11
~11lI 2!2

lI 3
, ~34!

with GOCP replaced byGe f f given by the GBI variational
procedure in Eqs.~32! and ~33!. In Eq. ~34!, Y refers to
Yukawa and WB to Wallenborn and Baus@45#.

However, Saigo and Hamaguchi@12# proposed recently a
different analytical formula to fit their MD calculations o
shear viscosity for Yukawa system that can be used for O
system as well.h* can be simply represented for eachk by

h* 5akT* 1
bk

T*
1ck , ~35!

whereT* is the normalized temperature defined above. T
Yukawa viscosity may thus be obtained from this new O
result as

hYSH* ~G,k!5a0Te f f* 1
b0

Te f f*
1c0 , ~36!

where Te f f* 5Gc /Ge f f with Gc5171.8 as for the self-
diffusion coefficient. In Eq.~36!, Y refers to Yukawa and SH
to Saigo and Hamaguchi@12#.

k

4-9
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As for HS system, Enskog’s theory for hard sphere
remarkably accurate when compared to simulations, i.e.,
h,hcp/5 @41#, except near the liquid-solid phase bounda
of the HS system, where the discrepancy may reach a fa
of 2 @15,47#. Furthermore, the Stokes relation with slip co
ditions, i.e.,Dhv5kBT/(2ps), has been found to be rema
quably precise~i.e., for h.hcp/5) @47#. Unfortunately, we
do not have more recent MD calculations and neither
analytical expression for the HS shear viscosity. As a con
quence, since we know the self-diffusion coefficient for H
system with high precision@41,44#, one solution would be to
estimate the HS viscosity using the Stokes relation forh
.hcp/5 and simply Enskog’s result forh,hcp/5, i.e., in the
gas phase. However, in order to avoid discontinuity or tr
the delicate joining question by a smoooth interpolation
tween both domains, we propose to use a fit to the cor
tions to Enskog, as obtained from the simulations for
hard-sphere fluid@47#. The Yukawa diffusion may thus b
obtained from the HS result as

hYHS* ~G,k![
hHS

he f
5

hHS

hE

hE

hgas

hgas

he f
, ~37!

where

hHS

hE
5~112.5502h223.0982h2144.1238h3!,

hE

hgas
5F ~12h!3

~12h/2!
10.800~4h!10.761~4h!2

~12h/2!

~12h!3 G ,

hgas

he f
5

5

48A3h2/3
Ap

G
e0.2058k1.590

. ~38!

Here, hgas and hE are the result for a dilute gas and E
skog’s result, respectively. Note that the CS equation of s
for the radial pair distribution function at contact has be
used~see Appendix B!. In Eq. ~37!, h is the effective hard-
sphere packing fraction of the Yukawa system determined
the GBI variational method. In Eq.~37!, Y refers to Yukawa
and HS to hard sphere.

Results are plotted in Figs. 9, 10, and 11, where the sh
viscosity h* , normalized in terms of Einstein frequency,
plotted in function of normalized temperatureT* for k
51,3,5, respectively. The range of variation ofT* is taken
from Ref. @12# and covers the strongly and weakly coupl
Yukawa systems. First, we see that the analytic fit of Wall
born and Baus is not good enough to reproduce the MD d
The general feature of the curves is wrong and the visco
minimum is located too high~low! in T* (G) space in any
case, even for the OCP system@46#. Second, the competition
between the OCP and HS systems is clearly visible. T
Yukawa shear viscosity is better estimated using the O
system@Eq. ~35!# than using the HS system@Eq. ~37!# for
k51. The opposite is found fork53. For k55, we can
attribute the shift in amplitude between the HS and M
curves at lowT* either to our approximate formula for H
viscosity or to the known property of viscosity to diverg
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near the liquid-solid phase boundary@48#. Note that this
competition has an impact on the location of the viscos
minimum Tm* too. Whenk increases, the OCP~HS!-like vis-
cosity minimum positionTm* increases~decreases! and be-
comes distant~closer! to the MD Tm* . Finally, we can ob-
serve a strong dispersion of the curves aboveT* 510.

FIG. 9. Shear viscosity normalized in terms of the Einstein f
quencyh* vs normalized temperatureT* of the Yukawa system
with k51. MD, SH, WB, and HS are the MD calculations of Saig
and Hamaguchi@12#, the effective OCP using the fit of Saigo an
Hamaguchi@12#, the effective OCP using the fit of Wallenborn an
Baus @45#, and the effective HS using an analytic formu
@15,41,47#.

FIG. 10. Shear viscosity normalized in terms of Einstein f
quencyh* vs normalized temperatureT* of the Yukawa system
with k53. MD, SH, WB, and HS are the MD calculations of Saig
and Hamaguchi@12#, the effective OCP using the fit of Saigo an
Hamaguchi@12#, the effective OCP using the fit of Wallenborn an
Baus @45#, and the effective HS using an analytic formu
@15,41,47#.
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We give in Table IV a comparison with the MD data
Salin and Caillol@13# for the shear viscosityh8 normalized
in terms of the plasma frequency. For the cases conside
the coupling is weak but the competition between the HS
OCP systems is again confirmed. Fork50,1(k52,3,4) the
OCP~HS!-like viscosity gives a better estimate of th
Yukawa viscosity than the HS~OCP!-like viscosity. Note that
for G52 andk50,1,2 (k53), T* corresponds to the uppe
limit of ~is outside! the interval used by Saigo and Hamag
chi @12# to obtain their fit. Furthermore, forG52,10 andk
54, no fit was proposed and an average formula correspo
ing roughly to a universal curve is employed. This mea
that the values given in Table IV for MDb and OCP should
be considered with caution.

C. Thermal conduction

The thermal conductivity will be denoted byl. The defi-
nitions of normalized thermal conductivities are given
l85l/lp f @15#, l* 5l/le f , and l r5l/lmtc @40–43#,

FIG. 11. Shear viscosity normalized in terms of the Einst
frequencyh* vs normalized temperatureT* of the Yukawa system
with k55. MD, SH, WB, and HS are the MD calculations of Saig
and Hamaguchi@12#, the effective OCP using the fit of Saigo an
Hamaguchi@12#, the effective OCP using the fit of Wallenborn an
Baus @45#, and the effective HS using an analytic formu
@15,41,47#.
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where lp f5kBr ivpaWS
2 , le f5kBr iA3veaWS

2 , and lmtc

5r i
2/3kBAkBT/m. Here, lmtc is the macroscopic therma

conductivity @40–43#. Note thatl* 5l8 when k50. The
normalization used forl* may be considered to be a natur
extension ofl8 of the OCP in finite screening.

To our knowledge, no systematic MD calculations ove
wide range of the system parameters$G,k% have been car-
ried out @46,13,49# . We have thus decided to fit the mo
recent and accurate MD data for the OCP system of Do
and Nyiri @46# by the same form selected by Saigo a
Hamaguchi for shear viscosity@12#. Thus, the Yukawa ther-
mal conductivity can be simply represented for eachk by

lYSH* ~G,k!50.011 76Te f f* 1
0.881

Te f f*
10.1655, ~39!

where Te f f* 5Gc /Ge f f with Gc5171.8, as above. From th
work of Hamaguchi and co-workers about self-diffusion a
shear viscosity, we can assume a quasiuniversal behavio
calculate the Yukawa thermal conductivity from

l* ~G,k!50.011 76T* 1
0.881

T*
10.1655, ~40!

where T* is the normalized temperature already encou
tered. In Eq.~39!, Y refers to Yukawa and SH to Saigo an
Hamaguchi@12#.

The situation is less dramatic for the HS system, beca
the deviations of MD calculations from Enskog’s express
have been proven to be barely perceptible within the f
percent accuracy of the data@47#. As a consequence, onc
obtained the effective hard-sphere packing fractionh of the
Yukawa system using the GBI variational method, t
Yukawa thermal conductivity normalized in terms ofle f
may be estimated from the HS resultlHS as

lYHS* ~G,k![
lHS

le f
5

lHS

lE

lE

lgas

lgas

le f
, ~41!

where

lHS

lE
51,
.

TABLE IV. Shear viscosity normalized in terms of plasma frequencyh8 for a few thermodynamics states. MDa, MDb, OCP, and HS are
given by the MD calculations of Salin and Caillol@46,13#, the MD calculations of Saigo and Hamaguchi@12#, the effective OCP using the
fit of Saigo and Hamaguchi@12#, and the effective HS using an analytic formula@15,41,47#, respectively.T* is the normalized temperature

G52 G510
k T* MDa MDb OCP HS T* MDa MDb OCP HS

0 85.9 ;0.5 0.42 0.42 0.47 17.18 ;0.1 0.09 0.09 0.22
1 108.7 0.496 0.43 0.51 0.66 21.74 0.112 0.11 0.10 0.19
2 220.05 0.991 0.61 0.63 1.01 44.01 0.145 0.13 0.12 0.21
3 592. 1.282 0.85 0.61 1.45 118.5 0.198 0.19 0.13 0.27
4 1918. 1.935 1.48 0.46 1.98 383.7 0.306 0.29 0.11 0.35
4-11
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TABLE V. Thermal conductivity normalized in terms of plasma frequencyl8 for a few thermodynamics
states. MDa, MDb, OCP, and HS are given by the MD calculations of Salin and Caillol@46,13#, the Yukawa
estimation using a fit form of Saigo and Hamaguchi@12#, the effective OCP using a fit form of Saigo an
Hamaguchi@12#, and the effective HS using an analytic formula@15,41,47#, respectively.T* is the normal-
ized temperature.

G52 G510
k T* MDa MDb OCP HS T* MDa MDb OCP HS

0 85.9 ;1.2 1.19 1.19 1.86 17.18;0.40 0.42 0.42 1.07
1 108.7 2.42 1.18 1.37 2.48 21.74 0.570 0.38 0.40 0.84
2 220.05 2.89 1.49 1.59 3.73 44.01 0.644 0.38 0.40 0.82
3 592.0 5.36 2.20 1.50 5.40 118.5 0.841 0.48 0.38 1.00
4 1918.0 7.18 3.53 1.13 7.37 383.7 1.239 0.72 0.29 1.31
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~12h/2!
11.200~4h!10.755~4h!2

~12h/2!

~12h!3 G ,

lgas

le f
5

25

64A3h2/3
Ap

G
e0.2058k1.590

. ~42!

Here, lgas and lE are the results for a dilute gas and E
skog’s result, respectively. Note that the CS equation of s
for the radial pair distribution function at contact has be
used. In Eq.~41!, Y refers to Yukawa and HS to hard spher

We give in Table V a comparison with the MD data
Salin and Caillol@13# for the thermal conductivity normal
ized in terms of the plasma frequencyl8. As above, the
coupling is weak but the competition between the HS a
OCP systems is clearly visible, even if the values given
MDb are too low by a factor of nearly 2 fork above one. For
k50 (k51,2,3,4) the OCP~HS!-like viscosity gives a bette
estimate of the Yukawa viscosity than the HS~OCP!-like vis-
cosity. Furthermore, these comparisons seem to justify
method and the use of Eqs.~39! and ~41!, waiting for MD
simulations in a wider range of the parameter space to
pose a better fit and to confirm the competition between
and OCP systems for thermal conductivity.

D. Rosenfeld approach

A semiempirical ‘‘universal’’ corresponding-states rel
tionship, for the dimensionless transport coefficients of de
fluids as functions of the reduced configurational entro
has been proposed by Rosenfeld@40#, extended to dilute flu-
ids by the same author@41#, and established by many simu
lations@40,50#. This approach is invaluable for four reason
First, an accurate, theoretically based, approach to de
fluid transport coefficients is still lacking. Second, no co
vergent perturbation theory of transport coefficients has b
established. Third, the brute-force computer methods ca
used to estimate transport coefficients, but these method
considerably too time consuming, for the same accura
than those designed to measure equilibrium properties
cannot be considered as black-box routines that generate
intensively over an industrialized scale. Fourth, this anal
cal relation between transport coefficients and excess ent
allows us to estimate, for instance, self-diffusion, shear v
04640
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n
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cosity, and thermal conductivity from the equation of state
monoatomic fluids with arbitrary pair potentials. In sum
mary, one realizes all the benefits of the Rosenfeld appro
to estimate transport coefficients knowing only the exc
entropy of the system of interest. This method is as usefu
Enskog’s original recipe relating transport coefficients
thermal pressure@51#.

Let us consider a one-component fluid with a reduc
excess entropys52S/(NkB), whereS is the entropy of the
system of interest composed ofN particles in the volumeV
at temperatureT. In short,s is equal to minus the reduce
excess or configurational entropy over the ideal-gas va
The quasiuniversal behavior for the transport coefficients
been derived either from many simulations for dense flu
@40#, or from Enskog’s theory for dilute fluids@41# by con-
sidering, i.e., normalized self-diffusionDr , normalized shear
viscosityh r , and normalized thermal conductivityl r . Keep-
ing the aforementioned normalization in terms of the E
stein frequency to be consistent with the MD of Hamagu
et al., the Rosenfeld scaling entropy transport coefficients
self-diffusion Desc* , shear viscosityhesc* , and thermal con-
ductivity lesc* for Yukawa fluid are given by

Desc* 5Dr
Dmd

De f
,

Desc* 5h r
hmv

he f
,

lesc* 5l r
lmtc

le f
, ~43!

where

Dmd

De f
5A3

hmv

he f
5A3

lmtc

le f
5

e0.2058k1.590

AG
S 4p

3 D 1/3

. ~44!

For dense fluids@41#,

Dr'0.6e20.8s,

h r'0.2e0.8s,

l r'1.5e0.5s, ~45!
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whereas for dilute fluids@41#, we obtain for HS

Dr.0.37s22/3,

h r.0.27s22/3,

l r.
15

4
h r , ~46!

and for OCP

FIG. 12. Self-diffusion coefficient normalized in terms of th
Einstein frequencyD* vs normalized temperatureT* of the
Yukawa system withk51. The quasiuniversal entropy scaling fo
mulas for dilute and dense fluids proposed by Rosenfeld@40,41# are
compared to MD calculations of Ohta and Hamaguchi@11#. HS and
OCP reference systems are considered.

FIG. 13. Self-diffusion coefficient normalized in terms of th
Einstein frequencyD* vs normalized temperatureT* of the
Yukawa system withk53. The quasiuniversal entropy scaling fo
mulas for dilute and dense fluids proposed by Rosenfeld@40,41# are
compared to MD calculations of Ohta and Hamaguchi@11#. HS and
OCP reference systems are considered.
04640
Dr.
0.40s24/3

lnF11S 2

3sD
2G ,

h r.
0.35s24/3

lnF11S 2

3sD
2G2

1

11S 3s

2 D 2

,

l r.
15

4
h r . ~47!

The quasiuniversal behavior for dense fluids, which ho
also for the OCP case, is replaced by two different behav
that depend on the inverse power law of the pair potential
dilute fluids @41#.

The elegant and deep method proposed by Rosenfeld
lates the transport coefficients to the equation of state via
Gibbs-Bogolyubov inequality. We have thus used the G
reduced excess entropy for HS and OCP systems to see
the predictions of Eqs.~45!, ~46!, and~47! for self-diffusion
and shear viscosity compare to MD simulations. Results
plotted on Figs. 12~15!, 13~16!, and 14~17!, where the self-
diffusion coefficientD* ~the shear viscosityh* ), normal-
ized in terms of the Einstein frequency, is plotted in a fun
tion of normalized temperatureT* for k51,3,5,
respectively. The quasiuniversal entropy scaling formulas
dilute and dense fluids proposed by Rosenfeld@40,41# are
compared to MD calculations of Ohta~Saigo! and Hamagu-
chi for self-diffusion coefficient~shear viscosity! @11# ~ @12#!.
HS and OCP reference systems are explicitely conside
First of all, the difference between HS and OCP syste

FIG. 14. Self-diffusion coefficient normalized in terms of th
Einstein frequencyD* vs normalized temperatureT* of the
Yukawa system withk55. The quasiuniversal entropy scaling fo
mulas for dilute and dense fluids proposed by Rosenfeld@40,41# are
compared to MD calculations of Ohta and Hamaguchi@11#. HS and
OCP reference systems are considered.
4-13
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decreases with increasingk for dense fluids; fork>3, one
can use one or the other, whateverT* may be. The same
tendency is found for dilute fluids except thatT* must be
greater than 100, which corresponds roughly to GBI redu
excess entropy below one, i.e., to the uncoupled Yuka
systems as expected. Second, the competition between
and OCP systems is again confirmed,k53 being the border-
line. Third, the most important result is that MD calculatio
nicely interpolate between dilute fluid at highT* and dense
fluid at low T* , the transition between both regimes bei

FIG. 15. Shear viscosity normalized in terms of the Einst
frequencyh* vs normalized temperatureT* of the Yukawa system
with k51. The quasiuniversal entropy scaling formulas for dilu
and dense fluids proposed by Rosenfeld@40,41# are compared to
MD calculations of Saigo and Hamaguchi@12#. HS and OCP refer-
ence systems are considered.

FIG. 16. Shear viscosity normalized in terms of the Einst
frequencyh* vs normalized temperatureT* of the Yukawa system
with k53. The quasiuniversal entropy scaling formulas for dilu
and dense fluids proposed by Rosenfeld@40,41# are compared to
MD calculations of Saigo and Hamaguchi@12#. HS and OCP refer-
ence systems are considered.
04640
d
a

HS

located betweenT* 510 andT* 5100. One could even pre
dict a minimum for shear viscosity, as already enhanced
Rosenfeld@43#.

V. CONCLUSIONS

The Gibbs-Boglyubov inequality is used to map t
Yukawa system to either the hard-sphere or the o
component reference systems. This method is very powe
to calculate equation of state quantities, i.e., pressure, in
nal energy, free energy, and entropy. It has been shown
this method can also be very efficient to estimate transp
coefficients, i.e., self-diffusion, shear viscosity, and therm
conductivity. One can employ either the known transport
efficients of the reference systems or the quasiuniversal
tropy scaling of Rosenfeld based on a correspondence
tween transport coefficients and reduced excess entr
Extensive comparisons are made with simulation results o
a wide range of the Yukawa system parameters$G,k%. It has
been proven that the hard-sphere reference system yie
lower upper bound of the Yukawa Helmholtz free energy a
a better estimate of the Yukawa transport coefficients
sufficiently strong screening.

The method presented here is easily extended to o
systems and to other properties for which expressions
known for the hard-sphere and one-component systems.
cause of the simplicity of the theory, the same method can
applied to mixtures.

ACKNOWLEDGMENTS
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FIG. 17. Shear viscosity normalized in terms of the Einst
frequencyh* vs normalized temperatureT* of the Yukawa system
with k55. The quasiuniversal entropy scaling formulas for dilu
and dense fluids proposed by Rosenfeld@40,41# are compared to
MD calculations of Saigo and Hamaguchi@12#. HS and OCP refer-
ence systems are considered.
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component plasma~ions and electrons! in the HNC approxi-
mation @52#.

APPENDIX A: YUKAWA FLUID EQUATION OF STATE
FROM THE GIBBS-BOGOLYUBOV INEQUALITY

In this appendix, we derive first Eq.~12! from Eq. ~9!.
Second, we calculate various thermodynamic quantities f
Eq. ~12! and apply the results to the one-component Yuka
system case.

Starting from Eq.~9! and usingUr5^Hr&r , we get

FY<Fr2Ur1^HY&r ~A1!

or

F Y
(ex)<F r

(ex)2U r
(ex)1^HY&r , ~A2!

by subtracting to both sides the ideal free energyF 0 @15#

F 051NkBT@ ln~r i !13 ln~L!21#, ~A3!

and the ideal internal energyU 0 @15#

U 05
3

2
NkBT. ~A4!

Here,L is the de Broglie thermal wavelength, defined as

L5S 2p\2

mkBTD 1/2

. ~A5!

The excess parts contain all the contributions to the free
internal energies that arise from the interactions between
ticles. A similar division into ideal and excess parts can
made for any thermodynamic function obtained by differe
tiation of the free energy with respect to the temperaturT
and the volumeV of the system assumed to be in therm
dynamic equilibrium. In order to work with dimensionles
quantities per particle, we rather consider reduced free
ergy f r

u[bF r
u/N and internal energyur

u[bU r
u/N @r

5Y,OCP,HS, . . . andu50,(ex), . . . ]. We thus get

f Y
(ex)< f r

(ex)2ur
(ex)1 K bHY

N L
r

. ~A6!

Note that f r
(ex) and ur

(ex) are often called abusively exces
free and internal energies per particle.

The main point is to calculate the thermal average of
configurational energy of our model,^bHY /N&r , which is
constituted of a neutral classical plasma made ofN identical
point chargesZ ~ions! immersed in a uniform neutralizing
background~electrons! of volume V and charge density
2re52Zr i . The effective interaction between ions due
the polarization background of electronsHY may be ex-
pressed as follows@10#,
04640
m
a

d
r-

e
-

-

n-

e

HY5
1

2 (
iÞ j

Z2va~ ur i2r j u!2(
i
E d3rreZva~ ur2r i u!

1
1

2E d3rE d3r 8re
2va~ ur2r 8u!1NE, ~A7!

where va(ur u)5e2e2ar /r and i , j 51, . . .N. In the right-
hand side of Eq.~A7!, the first term is the particle-particle
interaction, the second one is the particle-background in
action, the third one is the background-background inter
tion, whereas the last term fixes the zero of energy w
respect to the self-energy of a bare Coulomb charge

E[
1

2
lim
r→0

@Z2va~ ur u!2Z2v0~ ur u!#. ~A8!

Let us now multiply Eq.~A7! by b/N. Using Eq.~2! and the
system being isotropic and homogeneous,

bHY

N
5

1

2N (
iÞ j

bZ2va~ ur i2r j u!2r iE d3rZ2bva~ ur u!

1
1

2
r iE d3rZ2bva~ ur u!1bE, ~A9!

we easily obtain

bHY

N
5

1

2N (
iÞ j

bvY~ ur i2r j u!2S 3G

2k2
1

kG

2 D . ~A10!

The excess internal energy per particle^bHY /N&r is simply
given by

K bHY

N L
r

5
1

2N K (
iÞ j

bvY~ ur i2r j u!L
r

2S 3G

2k2
1

kG

2 D ,

~A11!

since^1&r51. Finally, let us introduce the two-particle den
sity @15# d (2)(r ,r 8)

d (2)~r ,r 8!5(
iÞ j

d~ ur2r i u!d~ ur 82r j u!, ~A12!

K bHY

N L
r

5
1

2NE d3rE d3r 8bvY~ ur2r 8u!^d (2)~r ,r 8!&r

2S 3G

2k2
1

kG

2 D . ~A13!

For isotropic and homogeneous system,

^d (2)~r ,r 8!&r5r i
2gr~ ur2r 8u!,

5r i
2@hr~ ur2r 8u!11#, ~A14!

where gr and hr are the radial pair-distribution and pai
correlation functions associated to the given phase sp
4-15
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densityr, respectively. Consequently, the excess internal
ergy per particle due to interaction is simply given by

K bHY

N L
r

5
r i

2 E d3rbvY~ ur u!hr~ ur u!2
kG

2
. ~A15!

Note that we would have obtained the same Eq.~A15! aver-
aging Eq.~A7! and using the one-particle densityd (1)(r ),
with ^d (1)(r )&r5r i for isotropic and homogeneous syste
@15#. In the right-hand side of Eq.~A15!, the first term is the
expected quadrature formula and the second term is a co
tion coming from the zero of energy.hr appears instead o
gr due to background. Equation~12! results combining Eqs
~A6! and ~A15!.

Now, let us calculate excess internal energyuY
(ex)

5bU Y
(ex)/N, excess pressurepY

(ex)5bPY /r i21, and excess
entropysY

(ex)5S Y
(ex)/(NkB) from Eq. ~12!. By definition,

PY52
]FY

]V U
T

,

SY52
]FY

]T U
V

,

UY5FY2
]FY

]T U
V

5
]~bFY!

]b U
V

~A16!

at fixed particle numberN. We know thatFY can always be
divided into an ideal partF 0 and an excess partF Y

(ex) , i.e.,

FY5F 01F Y
(ex) . ~A17!

The expression ofF 0 is given in Eq.~A3!. We have the same
additive splitting for entropy, internal energy, and pressu
i.e.,

PY5P 01P Y
(ex) ,

SY5S 01S Y
(ex) ,

UY5U 01U Y
(ex) . ~A18!

Since our system of interest is in thermodynamic equilibri
at fixed particle numberN, we can employ inverse tempera
ture b and particle numberr i as state variables instead
temperatureT and volumeV. The chain rules for partia
differentiation are thus simply given by

V
]

]V U
T

52r i

]

]r i
U

b

,

T
]

]T U
V

52b
]

]bU
r i

. ~A19!

This choice is consistent with the thermodynamic limit im
plicitly assumed in the end~i.e., N→`, V→`, N/V5r i)
and is well adapted to the calculation of reduced thermo
namic functions. As an illustration, let us find the express
04640
n-

c-

,

-
n

of the ideal reduced free energyf 05bF 0/N, internal energy
u05bU 0/N, entropy s05S 0/(NkB), and pressurep0

5bP 0/r i . From Eq.~A3!, we easily have

f 05 ln~r i !1
3

2
ln~b!1

3

2
lnS 2p\2

m D21, ~A20!

and thus

r i

] f 0

]r i
U

b

51,

b
] f 0

]b U
r i

5
3

2
. ~A21!

Then, makingF Y
(ex)50 in Eq. ~A16! and using Eqs.~A19!,

~A20!, and~A21!, we get

P 05
r i

b
r i

] f 0

]r i
U

b

,

S 05NkBS b
] f 0

]b U
r i

2 f 0D ,

U 05
N

b
b

] f 0

]b U
r i

, ~A22!

or

p051,

u05
3

2
,

s05~u02 f 0!. ~A23!

One can check that Eq.~A4! is recovered. Finally,uY
(ex) ,

pY
(ex) , and sY

(ex) are simply obtained by keeping the ter
F Y

(ex) in Eq. ~A16! and following the same procedure. We g

PY5
r i

b
r i

]~ f 01 f Y
(ex)!

]r i
U

b

,

SY5NkBFb
]~ f 01 f Y

(ex)!

]b
U

r i

2~ f 01 f Y
(ex)!G ,

UY5
N

b
b

]~ f 01 f Y
(ex)!

]b
U

r i

, ~A24!

or

pY
(ex)5r i

] f Y
(ex)

]r i
U

b

,
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uY
(ex)5b

] f Y
(ex)

]b
U

r i

,

sY
(ex)5uY

(ex)2 f Y
(ex) . ~A25!

Of course, the left-hand side of Eq.~12! is unknown, but the
GBI allows us to minimize the right-hand side of Eq.~12!,
i.e.,

D f r
(ex)[ f r

(ex)2ur
(ex)1

r i

2 E d3rbvY~ ur u!hr~ ur u!2
kG

2
,

~A26!

with respect to the given set of parameters$an% characteriz-
ing the reference system (GOCP for OCP andh for HS!. The
minimum value ofD f r

(ex) ,

D f r
(ex),0[D f r

(ex)u$an
0% , ~A27!

where the optimum parameters$an
0% satisfy the equations

]@D f r
(ex)#

]an
~$an

0%!50, ~A28!

serves as an approximation off Y
(ex) . But it can be used to

estimate various thermodynamic quantities, such asuY
(ex) ,

pY
(ex) , andsY

(ex) :

pY
(ex)'r i

]D f r
(ex),0

]r i
U

b

,

uY
(ex)'b

]D f r
(ex),0

]b
U

r i

,

sY
(ex)'uY

(ex)2D f r
(ex),0 . ~A29!

Now, for the Yukawa system, the whole variables of inter
depend on$G,k%. It is thus convenient to express all lengt
in unit of the Wigner-Seitz radiusaWS to have dimensionles
quantities. Equations~A26! and ~A29! read

D f r
(ex)5 f r

(ex)2ur
(ex)1

3

2E0

`

drr 2uY~r !hr~r !2
kG

2
,

~A30!

and

pY
(ex)'

G

3

]D f r
(ex),0

]G
U

k

1r i

]k

]r i
U

b

]D f r
(ex),0

]k
U

G

,

uY
(ex)'G

]D f r
(ex),0

]G
U

k

1b
]k

]b U
r i

]D f r
(ex),0

]k
U

G

,

sY
(ex)'uY

(ex)2D f r
(ex),0 , ~A31!

using
04640
t

r i

]G

]r i
U

b

5
G

3
,

b
]G

]b U
r i

5G, ~A32!

and the most general case, in whichk depends both onr i

and b. When calculatingpY
(ex) and uY

(ex) from Eq. ~A31!,
only explicit differentiation with respect toG andk are kept
due to the GBI variational principle. One simply finds

pY
(ex)'2

1

2E0

`

drr 2hr~r !S 2113r i

]k

]r i
U

b

r D uY~r !

2
G

2 S k

3
1r i

]k

]r i
U

b
D ,

uY
(ex)'

3

2E0

`

drr 2hr~r !S 12b
]k

]b U
r i

r D uY~r !

2
G

2 S k1b
]k

]b U
r i

D . ~A33!

In our case, the Yukawa system is supposed to be given
no assumptions are done concerning the physical proce
that create the screening. The inverse screening lengt
constant; this means that

r i

]k

]r i
U

b

52
k

3
,

b
]k

]b U
r i

50. ~A34!

One thus recovers the standard formulas@15# to calculate
excess pressure and excess internal energy, with the a
tional term due to the zero of energy:

pY
(ex)'2

r i

6 E d3rhr~r !rbvY8 ~r !,

uY
(ex)'

r i

2 E d3rhr~r !bvY~r !2
Gk

2
. ~A35!

The radial pair-correlation function is calculated with the o
timum set of parameters$an

0%. It is by now clear that we
cannot use the excess pressure and the excess internal e
of the reference system. The situation is more complicate
the general case whenk5k(r i ,b). As for entropy, the situ-
ation is very simple and opposite to what just encounter
becausesY

(ex) may be approximated by the entropy of th
reference systemf r

(ex),02ur
(ex),0 .
4-17
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TABLE VI. Compressibility factorz as a function of the HS packing fractionh proposed by Carnahan and Starling@16# ~CS! and by
Erpenbeck and Wood@53# ~EW!. V-PY and C-PY are the virial and the compressibility expressions issuing from the Percus-Y
approximation@15#.

Model V-PY C-PY CS EW

z(h)
112h13h2

~12h!2

11h1h2

~12h!3

11h1h22h3

~12h!3
11h

410.890851h10.8924486h210.3430298h3

122.277287h11.3262418h2
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APPENDIX B: GBI EQUATIONS USING HS REFERENCE
SYSTEM FOR YUKAWA SYSTEM

In this appendix, we derive practical formulas to min
mize the right-hand side of Eq.~12! with respect toh at fixed
$G,k%. This is equivalent of finding the minimum of functio
h→DF G,k

GBI(h) defined in Eq.~14! at fixed $G,k%. The ap-
proximations concern the two basic points of the theo
namely, the equation of state and the radial distribution fu
tion. In short, we extend the standard formulas origina
proposed for the one-component Coulomb system to the
component Yukawa system.

A large number of theoretical and phenomenologi
equations have been proposed for the HS equation of s
~see for instance Ref.@53#!. For simplicity, we have consid
ered the well-known formula found by Carnahan and S
ling @16# and the expression proposed more recently by
penbeck and Wood@53#. Both are simple and match near
exactly the computer-generated equation of state. Moreo
-

ns
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an empirical formula for expressing the bridge function
terms of interparticle separation and density has been
sented that is fully consistent with the best comput
simulation thermodynamics and structural data for HS in
fluid region at the time@54#, i.e., the expression of Erpen
beck and Wood@53#. We give in Table VI the various rela
tions for the HS equations of state, i.e., the ratio of the pr
sure to the ideal gas pressureP/P0 ~or compressibility factor
z) as a function of the HS packing fractionh.

The HS radial distribution function taken in the Percu
Yevick ~PY! approximation is known to suffer from two ma
jor defects@15#. On one hand, the value at contact is t
small. On the other hand, the later oscillations have
wrong phase and are too weakly damped. Verlet and W
@17# and then, Henderson and Grundke@18#, proposed to
correct those defects. Both approaches are the same in
spirit. The main assumption consist is writting the radial d
tribution functiongHS(r ) as follows:
gHS~r !5H 0 if r ,s0

g0~r /s0 ,h0!1
C1

~r /s!
exp@2C2~r /s21!#cos@2C2~r /s21!# otherwise,

~B1!
whereg0(r /s0 ,h0) is the PY expression for the radial dis
tribution function@55,56#. s0 andh0 are the corresponding
HS diameter and packing fraction, respectively (h0

5pr is0
3/6); h0 is related toh by the empirical formula

@17,18#

h05h2
h2

16
. ~B2!

The parametersC1 andC2 are chosen so that the equatio
of state calculated from either the pressure equation,

z~h![11 f ~h!5114hgHS~s!, ~B3!

or the compressibility equation,

]@hz~h!#

]h
5

1

11r iE
0

`

dr4pr 2@gHS~r !21#

, ~B4!
are equal to the equation of state given by the functionf (h).
The integral in Eq.~B4! can be done analytically using@57#

E
0

`

dxx2@g0~x,h0!21#5
~h024!~h0

212!

24~112h0!2
~B5!

to yield

1

z~h!1h
]z~h!

]h

5
~12h0!4

~112h0!2
112h

C1

C2

224h0E
1

(h/h0)1/3

dxx2g0~x,h0!.

~B6!

Equation~B3! determines the parameterC1,
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C15
f ~h!

4h
2g0@~h/h0!1/3,h0#, ~B7!

whereas the parameterC2 is fixed by Eq.~B6!.
Algebraic calculations are easier if we use~i! the Laplace

transform ofx@g0(x,h0)21# @55,56#

E
0

`

dxxe2ax@g0~x,h0!21#5G~a,h0!2a22[G~a,h0!,

~B8!

where

G~x,h0!5
xe2xH~x,h0!

12h@e2xH~x,h0!1I ~x,h0!#
, ~B9!

with

H~x,h0!512h0@x~11h0/2!12h011#,

I ~x,h0!5~12h0!2x316h0~12h0!x2118h0
2x

212h0~112h0!, ~B10!

and ~ii ! the Wertheim analytical expression forg0(x,h0)
@55#. For our purpose, since 0,h0,1 for 0,h,1, it is
sufficient to know this expression for 0,x,1 only:

xg0~x,h0!5~12h0!22(
l 50

2

Ale
tl (x21), ~B11!

where

Al5
1

3 (
m50

2

Hmj ml, ~B12!

and

H0511
h

2
,

H152~4h!21S f 21
1

8D 21/2Fx2
2 ~123h24h2!1x1

3S 12
5

2
h2D G ,

H25~4h!21S f 21
1

8D 21/2Fx1
2 ~123h24h2!1x2

3S 12
5

2
h2D G . ~B13!

Here j 5e2p i /3, f 5(313h2h2)/(4h2), x656u f 6( f 2

11/8)1/2u1/3, and t l52h(211x1 j l1x2 j 2 l)/(12h). Note
that the result concerningx6 is misprint in the original@55#,
as in other references@57–59#, if not simply absent; it is
04640
correctly given in this paper. The VW solution differs from
the HG approach by making good but irrelevant approxim
tions. The parametersC1 andC2 are simple functions ofh0

C15
3

4

h0
2~120.7117h020.114h0

2!

~12h0!4
,

C25
24C1~12h0!2

h0~11h0/2!
, ~B14!

but the formulas are restricted to the CS equation of state
summary, when an accurate equation of state is used,
resulting radial distribution function obtained from those d
velopments fits the ‘‘exact’’ computer-generated~Monte
Carlo or molecular dynamics! functions to within one per-
cent for allh @15#.

Using Eqs.~B1!, ~B6!, and~B7!, it is thus a simple task to
calculate h→D f G,k

GBI(h) defined in Eq. ~14!. Since f HS
(ex)

5*0
hdx f(x)/x andU HS

(ex)50,

D f G,k
GBI~h!5E

0

h
dx

f ~x!

x
16GFh0

2/3G~a0 ,h0!

1h2/3
C1e2a~a1C2!

~a1C2!21C2
2

2h0
2/3E

1

(h/h0)1/3

dxxe2a0xg0~x,h0!G2
Gk

2
,

~B15!

wherea052h0
1/3k anda52h1/3k. Note that this expression

is badly formatted for numerical purpose at smallk. One
should rather use a Taylor expansion with respect toa and
a0 in this situation and make sure that the one-compon
Coulomb system case is recovered when the CS equatio
state and the PY radial distribution function are used@36#.

Expressions of excess entropysY
(ex) , excess internal en

ergyuY
(ex) , and excess pressurepY

(ex) are easily derived from
Eq. ~B15! using Appendix A,

sY
(ex)52E

0

h
dx f~x!/x,

uY
(ex)56GFh0

2/3G~a0 ,h0!1h2/3
C1e2a~a1C2!

~a1C2!21C2
2

2h0
2/3E

1

(h/h0)1/3

dxxe2a0xg0~x,h0!G2
Gk

2
,

pY
(ex)5

1

3 S uY
(ex)2k

]uY
(ex)

]k D . ~B16!

Here, we only have to consider explicit differentiation wi
respect tok due to the variational character of the equatio
4-19
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